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Abstract—This work addresses methods and frameworks for
storing metadata in the petabyte range. SQL and NoSQL
databases are compared and their advantages and disadvantages
are described. Relational databases reach a limit in the Big Data
domain, NoSQL databases offer better scaling behavior. This
is illustrated by the requirements of the H.E.S.S. experiment.
Distributed file systems, various file formats, federated databases,
and data lakes and data warehouses are presented. Specifically,
the frameworks Lustre, Apache Parquet, ROOT, Delta Lake,
Apache Hive, and Greenplum are evaluated. Finally, some sug-
gestions for improving the use of frameworks in the H.E.S.S.
experiment are given.
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Data Lake, Distributed file systems, Open Data, File formats

I. INTRODUCTION

Nowadays, the processing of data has reached a size that
overwhelms normal systems. This work is therefore intended
to demonstrate methods and frameworks for dealing effi-
ciently with these data volumes. In particular, the handling
of metadata is considered. Also, the aspect of scaling will
be addressed, as this is the most important aspect for future
projects. This project should show an approximate direction
and the state-of-the art of the Big Data. Concrete frameworks
can only be considered briefly. In particular, a performance
analysis will not take place. It is also limited to open source
frameworks and criteria such as commercial support are not
considered.

There are countless application areas that consider the problem
of huge amounts of data. In this thesis, the field of astronomy
will be considered in particular, since they produce corre-
sponding amounts of data. A project that has been running for
several decades and is therefore suitable to determine typical
requirements of a Big Data project, is called The High Energy
Stereoscopic System (H.E.S.S.). At its core, it consists of a
system of telescopes for the study of cosmic gamma rays. It
is located in Namibia and was first commissioned in 2002.
After an expansion in 2012, 5 telescopes are now operating in
conjunction to increase the detection area and cover different
energy ranges. Among them is the largest reflecting telescope
in the world. In total, the project has about 250 employees
[1].

Ramin Marx [2] provided concrete insights into the project’s
requirements. According to him, the telescope produces a
data volume of 300 GB per hour. This involves operating
the telescope every night, with an estimated average runtime
of 6 hours per night. However, this can vary due to external
influences such as weather or full moon. This amount of data,
however, only concerns the raw data in the form of images
with a resolution of about 4 megapixels. The total amount of
raw data has thus reached a size of petabytes and is stored
in a classical file system. This is sufficient for this project, as
the storage is more for archival purposes. Queries of the raw
data take place very rarely. The data is stored in the ROOT file
format, which was developed by CERN for their data volumes
(see section V-B2). These data are then further calibrated in
several steps. For example, noise is removed or broken pixels
are interpolated. This calibration ideally runs only once per
data set and reduces the amount of data by a factor of about
20. A large amount of metadata is also extracted from the
raw data. Examples include target coordinates, duration, date,
telescope temperature, and weather data such as the thickness
of the atmosphere. These data are stored in a MySQL database
due to frequent analysis. This also allows parallel access by
the different staff members. The database stores about 1000
different attributes and has about 100,000 entries. In addition,
the database is kept redundant to prevent data loss. Critically,
it must be mentioned that this amount of data is far away from
the considered petabyte size.

It can therefore be seen that the number of write accesses
far exceeds the number of read accesses. So there is no need
to focus much on optimizing the access times here. Also, all
data are independent of each other. So no classical relations
between the data are necessary. At most, historical queries can
concern different runs, for example, several runs of the same
galaxy at different times. However, this occurs very rarely.
Furthermore the number of columns with 1000 seems very
high. Here the question arises whether a structured, SQL-
based database is useful. It is still important how a change
of the schema is handled. Here, currently the database is
refilled every time. This is possible because all metadata can
be derived from the raw data. This refilling occurs only about
2 times a year, but of course no access is possible during
this time. Therefore, this work shall investigate, among other



Fig. 1: Dynamic model for processing data

things, whether a NoSQL-based database would be better
suited for the H.E.S.S. experiment.

II. BIG DATA

The problem of growing data sizes is summarized in computer
science under the term Big Data. However, Big Data is also
often used as a buzzword for various technologies and social
problems. It is therefore important to find a uniform definition
for it. The most common definition describes the term using
the 3 "V "s [3]. The volume describes a volume of data that
cannot be processed by conventional systems. The Variety
describes the characteristic of the data to appear in different
forms. This includes, above all, unstructured data that must
nevertheless be processed. The Velocity describes the speed
with which new data is generated. It is so high that the data
cannot be cached and must be processed in real time. However,
this leads to the problem of Data Irreversibility. Data can
only ever be processed once, so if an error occurs or certain
information is skipped during processing, this results in a
permanent loss of information.

The PUNCH4NFDI consortium has addressed these require-
ments and developed a model for processing data, which is
shown in Figure 1. It is not determined in advance which
data will be processed, but this is decided dynamically during
the process. Data is processed in real time, for example
by machine learning applications, and the result influences
which data is collected by filtering. The data is then evaluated
and validated, and then archived. Since the amount of data
cannot be stored completely, dynamic archiving must again
take place. This again influences the collection of the data.
All the processes described here must be adapted to the
high data rates, which is made possible by good scalability
[4][5].

The handling of large-scale metadata in view of “Data Irre-
versibility“ is intensively explored in the Task Area 5 of the
PUNCH4NFDI consortium [5]. Here, use cases and their chal-
lenges from astronomy and high-energy physics are discussed.
Task Area 3 is preparing a document on handling metadata in
simulations. In astroparticle physics, metadata use cases are
considered by the projects KCDC (KASCADE Cosmic-ray

Data Center) and GRADLCI (German-Russian Astroparticle
Data Life Cycle Initiative) [6]. A design of future metadata
systems in high-energy physics is discussed in Ref. [7]. In
Lattice QCD, a flexible description of metadata (based on
XML formats) was introduced already two decades ago [8]
and has received a status update recently [9].

III. DATABASES

Databases are the most obvious form for storing huge amounts
of data. Here, however, there are different forms that have to
be compared. If properties of databases are to be evaluated,
then usually the ACID properties of database are looked at.
The term ACID stands for Atomicity, Consistency, Isolation
and Durability and was introduced in 1983 by Theo Härder
and Andreas Reuter [10]. It basically describes how robust
the database is against common problems. Thus, the database
should remain consistent even in the presence of errors or
concurrent queries.

A. ACID

Atomicity describes the desired behavior, that changes of the
data could be executed either completely or not at all. It should
never happen, for example, that when writing a set of data,
only half of the data is written. For this, transactions are
usually used that execute the changes one after the other, but
only make the data visible to other processes after completion.
For other processes the data change thus happens atomically. If
errors occur in the meantime, everything that has been written
so far can be deleted again by a rollback.

Consistency describes the property that the consistency of
the data is maintained by the database. On the one hand,
this concerns the integrity conditions defined in the schema
of the database. These include, for example, adherence to
value ranges (e.g. only positive numbers) or adherence to
referential integrity. In other words, the database must ensure
that data referenced by foreign key also exists in a reachable
manner. The other type of consistency concerns distributed
systems. Here, data is usually kept redundantly in replicas
to increase access times at different locations in the cluster.
The system must now ensure that the data is identical in
all replicas. Accesses at different points in the cluster must
therefore always provide the same responses.

Isolation describes the property that transactions must not get
in each other’s way. Thus, if one user makes a read request
and another writes to that area at the same time, then the
read user must not be affected by the write operation. Also,
write transactions running in parallel may get in each other’s
way. These problems are usually solved by locks that achieve
mutual exclusion (mutex) for the critical area. Since this limits
the degree of survivability and in the worst case deadlocks
can occur, some database systems neglect this point or apply
it only to certain partial problems.

Durability describes the behavior that data is permanently
stored in in the database. This sounds obvious at first glance,
but this behavior must also be guaranteed if the database



fails due to a crash. Many systems do not write the data
immediately to the hard disk, but keep them in a much faster
cache in the main memory. Here, many database systems keep
a transaction log that documents all changes to the database.
If a crash occurs, the changes that have not yet been made can
be implemented by re-executing the saved queries.

B. CAP-Theorem

In theory, all ACID properties can be fulfilled, but in practice
it usually looks different. Above all, since many databases
represent a distributed system. This is where the CAP theorem
comes into play. It was established in 2000 by Eric Brewer and
states that in a distributed system the properties Consitency,
Availability and Partition Tolerance can never all be achieved
at the same time. Consitency describes the property that data
accesses across all nodes produce the same result. Availability
describes not only the general availability, but also the speed
at which accesses are made. Partition tolerance describes the
ability of the database to remain consistent if individual nodes
can no longer communicate with each other. Also the general
scalability over nodes is covered by this point. The individual
points influence each other, as shown in the Venn diagram
in Figure 2. So, for example, if a database focuses on fast
access times and scalability, then consistency suffers. Another
example is the focus on consistency and fast access times. This
is the case with classic, relational database systems. However,
these then have significant disadvantages in scaling, which is
problematic for Big Data requirements.

C. SQL

Basically, there are two subdivisions of databases: SQL- and
NoSQL-based databases. They differ in whether they use the
SQL query language for changing and reading data. However,
the distinction by language is not simply an arbitrary choice,
because certain architectural conditions must be met for the
language to be used. SQL is based on relational algebra, which
transforms each query into a set of operations for manipulating
relations. These operations are usually: projection, selection,
cross product, union, difference and renaming. It is important
to note that data for this must be in relational and structured
form. On the one hand, the type of data must be defined be-
forehand, which is called database-schema. On the other hand,
data must be normalized beforehand and relations between
data must be defined.

This normalization and creation of relations is difficult in prac-
tice due to widely varying data. Also, schema migrations are
often very difficult to implement when requirements change.
Another point of criticism is the weak scalability of relational
databases. In most cases, they can only be installed on a
physical server. Also, there are limits on data sizes for most
databases, which can be problematic in the Big Data area.
Well known databases like MySQL have table limits of 64TB
and row limits of only 64KB. Other databases like Oracle
even have a limit on the entire database of 2PB [11]. There
are also performance issues when indexing huge amounts of
data. In practice, these can take a very long time and lead to

exponential growth in memory consumption. Read and write
accesses also scale only conditionally with an increase in data
volume and become increasingly cost-intensive.

D. NoSQL

In contrast to SQL-based databases, NoSQL databases go
without a relational approach. They often neglect strong
consistency and the ACID criteria. This does not mean, of
course, that the data within the database is unusable, since
weak consistency is nevertheless realized. This can be realized
on the one hand by the principle of eventual consistency.
Thereby it is guaranteed that the data becomes consistent
at an undefined point in time. For example, one cannot rely
on the fact that directly after a write access the read access
can already find the data. This principle is also called BASE
(Basically Available, Soft state, Eventual Consistency). On
the other hand, NoSQL databases often do not offer any
transactions or restrict them, for example, only to certain
commands.

NoSQL databases can be divided into several categories.
On the one hand, there are key-value-stores. These can be
compared to hash tables, as they assign exactly one value
to each key. Moreover, they are able to read these values
again in constant time. A variation of these are document-
oriented databases. These allow the storage of more complex
data models for a key. The documents are not structured and
can be whole files. Semi-structured data such as JSON or
XML can also be stored and efficiently read. There are also
column-oriented databases. These store columns one after
the other and separate attributes of an entity. This has on
the one hand a positive influence on the access times, since
less data must be scanned, which takes up with databases the
majority of the time. Also columns, which are not needed,
can be skipped more easily. The disadvantage is the higher
effort when writing a data set, because here the scanning
effort is significantly higher. In addition, a column-oriented
format allows better compression, since similar data is stored
next to each other. Many compression methods such as LZW
or RLE build precisely on this spatial similarity and thus
achieve a higher compression. Finally, there are graph-based
databases. These model relations between data as graph, with
which hierarchical or interlaced structures can be represented
well. While relational databases determine these relationships
at runtime via joins, these are stored in graph-based databases
and thus achieve fast access times. Popular areas of application
are, for example, social networks where users can follow other
users.

The different NoSQL database types have different strengths
and weaknesses. However, all of them have the ability to
do without a predefined schema. This enables them to store
very diverse data. It also makes them capable of responding
to changes in the data model. Furthermore, the mitigation
of consistency allows them to be distributed across different
servers, which leads to good horizontal scaling. This leads,
for example, to constant access times as the amount of data



Fig. 2: CAP theorem on the basis of different databases

grows, which is not the case with a relational database. A
disadvantage is that joins between data are very difficult to
model. Graph-based databases are an exception. All NoSQL
databases instead do without normalization of the data. In this
case, the relation is stored as a new entry. Thanks to the
good scalability, the higher amount of data is negligible in
practice. Another disadvantage is the lack of a standardized
query language. Here, each database usually offers its own
language, which is specialized for the respective use case.
There are alternatives like GraphQL, which are based on SQL
and try to be established as a standard. Weak consistency and
missing transactions are also an exclusion criterion for some
use cases. One example is banking, where the order and timing
of write accesses are of course critical.

IV. AGGREGATED DATA SOURCES

Besides the direct use of databases, there is another view of
data storage. It combines several databases, which mostly con-
tain data on a specific area, into a new, more comprehensive
data source. This then greatly helps to process huge amounts
of data, as they are all accessible under the same interface.
There are two ways to enable this view here.

One is that it can be just a pure abstraction layer. These
systems are often referred to as federated database systems.
In this case, the data is not copied and remains physically in
their respective data stores. Access to the individual databases
is then handled transparently for the user by the application
through a so-called mediator, so that the user has the impres-
sion of accessing a single data source. The mediator must
split the query into sub-queries and send them to the individual
databases, whereby different query languages can also be used.
It is also possible to combine both SQL and NoSQL based
databases.

It is important that a global schema can be found, which the
individual data sources follow at least in parts. This integration
of many local schemas into a global schema is a challenge in
itself. Here, the global schema can either be derived from the
local schemas (Global-as-View (GaV)) or the local schemas
are subsets of the global schema (Local-as-View (LaV)).
A well-known algorithm called bucket algorithm is able to
build a global schema from existing schemas, but with a
complexity of NP-complete. It is accordingly slow for huge
amounts of data. However, since the whole thing only has to
be executed when the schema changes, it is not an exclusion
criterion.



It is also important that the individual data sources remain
autonomous and do not have to be specially adapted for an
integration. It is the task of the mediator to ensure that the data
from the local sources can be merged. A good definition by
Andreas Bauer and Holger Günzel is: "A federated database
system is a multi-database system with a (global) conceptual
schema that encompasses all component systems. All com-
ponent systems must thereby preserve their autonomy and
local conceptual schema, i.e., they remain independent with
respect to design, execution, and communication." [12]. The
big advantage of this architecture is that it does not increase
the amount of memory. The major disadvantage is the high
complexity of finding a common schema.

On the other hand, there is the option of copying interesting
data to a new, central data store. This has the advantage that
data can be transformed simultaneously and thus unified. Fast
access times can also be expected, since no aggregation of
the data is necessary at runtime. The obvious disadvantage is
increased storage requirements, which can be very critical for
many Big Data projects.

A. Data Warehouse

The paradigm of aggregated data sources was first mentioned
in the 1980s and is known as Data Warehouse Architectures.
Its origin lies in business informatics and was intended to help
companies make corporate decisions. Although no fixed defi-
nition could be developed, there are some criteria that apply to
most data warehouses. First, data is loaded and unified from
heterogeneous and distributed data sets. The unification is an
important point to enable a common view. Then it is important
that the data is processed according to fixed, previously defined
methods. Well-known methods are, for example, data mining,
visualizations or Big Data analyses, especially with machine
learning. Data mining uses statistical methods to find hidden
relationships and structures in data. In machine learning, a
model was developed in advance from similar data that can
make certain statements with new data. Bauer and Günzel
define data warehouses as "a physical database that presents
an integrated view of (any) data to enable analysis" [12]. Here
it becomes clear that in contrast to federated database systems
a copy of the data takes place.

One of the main problems with this architecture is that the data
must be available in structured form. This is necessary because
the use cases for the data warehouse are already defined. The
way in which the data is processed is therefore strictly prede-
termined. Therefore, a schema must be defined in advance that
applies to all data. This procedure is also described as schema-
on-write. A process called Extract, Transform, Load (ETL)
is used. In this process, data is loaded from various sources,
transformed into the schema of the warehouse, and then loaded
into the warehouse. For example, extraction can be periodic,
event-driven, or query-driven. There are both syntactic and
semantic criteria to consider during the transformation. All in
all, data warehouses are very specialized data sources that are
aggregated only for analysis.

B. Data Lake

In contrast to the fixed structure of a data warehouse, a
Data Lake can also contain unstructured data. There is no
common schema. Instead, the type of analysis defines the
schema, which is also referred to as schema-on-read. This
is especially important when the way the data will be used
cannot be determined in advance. This is especially the case
with projects that rely on voluntary, open collaboration. These
projects are often referred to as Open Data projects. Data in a
data lake can have a wide variety of data formats. For example,
images, audio, JSON or CSV. There is no ETL process, i.e.
no transformation of the data. This leads to a number of
disadvantages. On the one hand, the memory consumption
requirements are significantly higher and on the other hand, a
lot of data does not offer any real value. It can happen that
analyses become increasingly difficult and machine learning
models are overwhelmed with irrelevant data. This condition
is also referred to as a Data Swamp.

Strongly federated data lakes are also a possibility. Here, data
is exchanged across institutions. A well-known data lake of
this kind is operated by CERN and is called ESCAPE. It is
designed to make exabytes of data in the field of astronomy
and particle physics available between different research in-
stitutions. It is interesting to note that different institutions
use different memories such as EOS, DPM, dCache, StoRM
or XRootD. To synchronize this, three software solutions are
used: GFAL, FTS and Rucio. Grid File Access Library (GFAL)
is used as an abstraction layer to make the different storages
known to each other using different protocols like FTP and
HTTP. File Transfer Service (FTS) is used to copy data
between the storages. It uses a technique called Third Party
Copy (TPC), which allows data to be directly linked between
compatible stores. Rucio is used as a data orchestrator. It is
the layer that users interact with and which in turn uses FTS
and GFAL [13].

V. POSSIBLE FRAMEWORKS

A. Filesystems

File systems in themselves are a method of storing data in
the Big Data domain. Of course, every database eventually
also stores on the file system, but a direct use can be useful.
Especially if no complex queries are needed, the overhead
by a database is not necessary. Especially if data is to be
archived over a longer period of time, this can be a given.
It also provides very direct access to the data. Various other
frameworks have their own access options, which do not
always have to be compatible. For example, different query
languages for databases. Files are more universal and do not
have this problem. Distributed file systems can also achieve
very good scaling. Above all, good performance (RAID 0) and
redundancy (RAID 1) can easily be achieved by using RAID
without having to implement this through software.

Well-known implementations of distributed file systems are,
for example, Hadoop Distributed File System (HDFS), Lustre



or BeeGFS. HDFS is a file system from the Hadoop envi-
ronment and therefore well integrated into classic Big Data
frameworks such as Apache Spark. BeeGFS is a file system
from the Fraunhofer Center for High Performance Computing,
which, in addition to good performance and scalability, also
offers ease of use in particular. This makes it an ideal file
system in the academic domain. Lustre focuses on very
high performance and is therefore heavily used in today’s
supercomputers. 60 of the 100 fastest supercomputers in the
world, including the fastest, use this file system. It supports
several thousand clients, several petabytes of storage, and more
than a terabyte per second of throughput. All distributed file
systems have a similar structure, so they are described in more
detail below using Lustre as an example.

Distributed file systems are usually not directly responsible
for storing files, but form an abstraction layer over classic
file systems such as EXT4. Instead, they are responsible
for coordination and the management of metadata. The ar-
chitecture is shown in Figure 3. Lustre has one or more
metadata servers with one or more metadata targets. Here
the separation becomes clear, the servers are logical interfaces
which serve physical targets in the form of local file systems.
The server administers metadatas such as file names, access
authorizations and folder structures in a Linux inode. Storage
locations are also stored in an FID location database. The data
is then stored by object storage servers on one or more object
storage targets. For clients this separation is transparent and
they interact with a classic POSIX compatible file system.
Clients cannot edit the underlying file systems to maintain
consistency in the system. Files are usually split into smaller
chunks and distributed in distributed file systems. This file
striping provides chunks in the size of 1 MB, which are
stored on different object storage servers with a round-robin
procedure. This leads to a better performance, because data can
be read in parallel. Ideally, RAID hard disks are used here.
In addition to classic Ethernet, communication between the
servers can also take place via remote direct memory access
(RDMA) implementations such as InfiniBand or Omni-Path,
which can further increase performance. To achieve POXIS
compatibility, concurrent accesses to the same data must be
excluded. This is ensured by a distributed lock manager
(LDLM), which uses byte range locks to achieve this. This
allows multiple clients to have read access to overlapping
sections. Also thanks to striping, multiple clients can write to
different chunks at the same time, leading to a reduction in the
locking bottlenecks. Cache coherency is also ensured by the
metadata server. Other features of Lustre include the ability to
store data and metadata together. This data-on-metadata can
reduce the overhead associated with very large numbers of
small files. This would otherwise lead to a bottleneck with a
single metadata server. Lustre also has the ability to build
a layered storage structure. It is often useful to store data
on different media depending on how often it is requested.
For example, old data can be archived on magnetic tapes,
while newer data is stored in caches in RAM. Lustre manages

this archiving based on defined rules and takes care of the
coordination between the systems. Finally, distributed file
systems always have mechanisms against a failure of nodes.
Here, heartbeat messages are usually exchanged and failover
servers are defined. These are usually other servers in the
cluster to cause no overhead in normal operation [14].

B. File formats

1) Apache Parquet: Apache Parquet is an open source,
column-oriented file format. As described in section III-D
this offers a performance advantage over row-oriented formats
when reading the data. And disk accesses are the biggest
bottleneck in many systems, so this performance advantage
is noticeable. Also, a significantly higher compression can
be achieved, which is very helpful for archiving. Specifically,
Dictionary Encoding, Run Length Encoding (RLE), Bit Pack-
ing and Delta Encoding are used for encoding. The different
encodings are used automatically so that the best result is
achieved. Thanks to the column-oriented storage, this can also
be different for different columns. For the compression then
different, very well known methods like Snappy, GZip or LZO
can be used [15].

Apache Parquet was also designed to separate metadata from
the actual data. This allows related data to be split across
multiple Parquet files. Furthermore, Parquet uses Apache
Thrift to describe the metadata. Apache Thrift is a description
language for the exchange of data between different applica-
tions. These can also be programmed in different programming
languages. Thrift generates, on the basis of an API definition,
different client and server implementations and data classes in
languages like C++, Java or Python. The reading and writing
of Parquet files is thereby strongly simplified [16].

Besides Apache Parquet there are other column-oriented file
formats. Here, for example, RCFile or ORC should be men-
tioned, which cover the same use cases. One advantage of
Apache Parquet, however, is that it has greater support for
various Big Data frameworks and is optimized for Apache
Spark. Even pandas, a popular Python framework for data
analysis uses Parquet as a file format. It is also explicitly
designed for self-referencing datasets and uses a novel record
shredding and assembly algorithm for more efficient storage.
Furthermore, Parquet has the ability to combine different
schemas and add new columns [15].
2) ROOT: ROOT is not only a file format, but also an open
source software for reading this data. It was developed at
CERN to be able to process the data volumes of the LHC.
In the meantime it has developed to a general file format for
different use cases. It holds data worldwide in an order of
serveral magnitude of Exabyte. It was written in C++ and has
its own interpreter called Cling, which can also be used as
a command line tool. Bindings for Python also exist, so that
many machine learning libraries can be connected. Meanwhile,
the interpreter is C++11 standard compliant. Nevertheless, it
can also ignore minor syntax errors like missing semicolons
to allow easier usability. Data is stored in ROOT in a binary



Fig. 3: Architecture of the Lustre filesystem

format and forms a tree structure, which provides for faster
reading times. This tree structure can also be spanned across
multiple ROOT files. This allows data to be stored in different
locations and still be read as a single object. Furthermore,
ROOT stores metadata with the actual data. The files are thus
self-describing.

Furthermore, the ROOT software is able to perform statistical
analyses. It supports a number of mathematical functions,
some of which can be executed in parallel. The generation
of data is also possible, so that simulations can be easily gen-
erated. It is also possible to create 2D and 3D visualizations.
Various graphs, plots or histograms are available here. These
can be easily published thanks to various export formats, so
this is very suitable for the research field [17][18].

C. Delta Lake

Delta Lake is an open source framework for petabyte-scale
data storage. It uses its own architecture called Lakehouse.
This combines the two architectures data warehouse and data
lake and was presented in a whitepaper by the developers.
They promise that "Lakehouses combine the key benefits of
data lakes and data warehouses: low-cost storage in an open
format accessible by a variety of systems from the former,
and powerful management and optimization features from the
latter" [19]. According to the authors, the evolution of Big
Data architectures is illustrated in Figure 4. It shows that the
focus was originally on structured data in data warehouses.
Due to growing data volumes, the focus then switched to

unstructured data lakes, which, however, continued to offload
higher quality data to data warehouses in an ETL process.
The authors argue that this unnecessarily increases complexity
and that the data does not reach the user quickly enough
because the processes are time-consuming. They also criticize
the fact that no direct access to conventional data lakes is
possible and that this always has to be done via integrated
interfaces. Delta Lake therefore uses open standards such as
Apache Parquet and still enables important features such as
ACID compatibility, versioning and indexing. It is also still
important how the ETL process is executed. Delta Lake uses
a Medallion architecture for this. In this process, data is refined
further and further in a pipeline and schemas are made more
and more restrictive. Raw data from various sources ends up
in the bronze layer. No selection is made. In the silver layer,
data is validated, duplicates are removed and transformed. The
gold layer then contains data in the form in which users need
it. In particular, aggregations, joins and filtering are performed
to minimize access times [20].

Other design decisions included direct support for machine
learning and data science applications. Here, Delta Lake uses
declarative DataFrames, an abstraction layer of the Python
library pandas. A metadata layer on top of the Data Lake
is also being introduced. It enables ACID compatibility and
other management features such as rollbacks and change logs.
Performance is not constrained and there is no copying of
data between layers. Instead, this layer can actually improve
performance through caching by prioritizing frequently loaded



Fig. 4: Evolution of Big Data Systems towards Lakehouse Architecture

data. Performance measurements by the authors show that
Delta Lake is more performant and significantly cheaper than
well-known cloud providers such as AWS, Azure and Google
Cloud [19].

Another feature is the ability to integrate various other com-
pute engines. These can then access Delta Lake both read
and write. Here, the documentation mentions Apache Spark,
Apache Flink or Apache Hive, among others. There is also an
application called Delta Standalone, which provides interfaces
for more direct access. However, these are only available for
Java applications. There is also a project for importing data
from SQL-based databases [21].

D. Apache Hive

Apache Hive describes itself as a distributed, fault-tolerant
data warehouse that can process petabytes of data via SQL
[22]. It was originally developed by Facebook, but is now
being further developed under an open source license. It builds
on the well-known MapReduce framework Hadoop and offers
possibilities to integrate different database systems such as
Apache HBase and HDFS-like file systems under a central
interface. Other well-known HDFS-like file systems are, for
example, Amazon’s S3 or Google Cloud Storage, so that the
integration of cloud-based storage also seems to be given.
Various YARN-based execution engines can also be integrated,
which ultimately execute the queries. The queries are made
in a SQL-like language called HiveQL. This is transformed
at runtime into queries that the underlying execution engines
understand. Here, for example, MapReduce, Spark Jobs or
Apache Tez Queries are to be mentioned. A fixed schema
is not necessary, schema-on-read is applied. Data integrity is
checked at runtime.

A central component in Apache Hive is the Hive Metastore
Server (HMS). It provides the various integrable clients with
metadata such as tables and partitions in a central database.
This abstracts the nature of the data from the actual storage

and provides a way to respond to updates to the data. This
feature is also referred to as Data Discovery. This enables
the integration of frameworks such as Apache Spark, Impala
or Presto to process the data. The access to the metadata is
thereby controlled via a separate API. The database here is a
classic, relational database. By default, an integrated Apache
Derby database is used, but the integration of other databases
is also possible.

Like any RDBMS, the ACID criteria are very important. Hive
supports the full ACID criteria, but not for all SQL commands.
According to its own statement, Hive is also not designed
for classic multi-user queries with transactions. Instead, it
maximizes horizontal scalability [23].

E. Greenplum

Greenplum is a Big Data application that applies a massively
parallel processing (MPP) architecture to the very well-known
relational database PostgreSQL. According to its own state-
ment, it is capable of processing petabytes of data without
performance loss. It achieves this by the possibility of dis-
tributing PostgreSQL databases on arbitrarily many instances
and to scale so horizontally. It thus represents a federated
database system. It is an open source project under the Apache
2 license, which is strongly sponsored by VMWare and is
also very actively developed. Other features include the ability
to integrate various, external data sources. Among others,
Hadoop, Google Cloud Storage, ORC, AVRO and Parquet
are mentioned. It also natively supports various ways to run
Machine Learning and Big Data analytics distributed on the
cluster. This is achieved through the integration of Apache
MADlib. Its query planner called GPORCA is also singled
out by the developers. It was designed specifically for Big
Data applications and transparently distributes write and read
queries across different nodes [24].

Technically, Greenplum consists of a cluster with a coordinator
server, a backup coordinator and various segment nodes. The



data resides on the segment servers, with the coordinator server
managing the system’s metadata. Queries are also processed
by the coordinator server and automatically distributed. Each
segment server in turn runs different segments, which represent
different database instances. In addition, segments are kept
redundant, with data residing on different physical nodes for
resilience. How the data is distributed must be specified by the
user when defining the schema via data definition language
(DDL). Thus, it requires a common schema across all nodes
[25].

Greenplum supports the SQL:2003 standard and is ACID
compliant according to its own statement. However, the per-
formance should also be better for non-transactional queries.
Performance measurements show very good parallelizability
for the latest Greenplum version 6. Overall, it is considered
a very good database system in the Big Data area for the
majority of all use cases [26].

VI. CONCLUSION

The problem of the growing metadata volume can be well
illustrated by the H.E.S.S. experiment. It is true that the
methods currently used there are sufficient. However, the
dynamic character of their metadata is characteristic for future
requirements, such as at the Square Kilometre Array Observa-
tory (SKAO): for the reconstruction of measurement results, in
particular, a large number of time-varying boundary conditions
must be stored.

The limitations of SQL-based relational databases have been
demonstrated. As a solution, there are NoSQL databases
without a fixed schema and with better scalability. Different
features and their advantages and disadvantages have been
explained. Furthermore, aggregated databases as well as data
warehouses and data lakes have been described. Different
frameworks for storing and processing data were presented.
These are of course differently suitable for different use cases.
In the following, the frameworks of the H.E.S.S. experiment
are evaluated from the author’s point of view.

For the H.E.S.S. experiment, the storage of raw data in a file
system is very well suited. It is more for archiving purposes
and therefore no complex queries take place. In addition,
storage as a file offers advantages such as easier export to
external researchers. Here, the use of a distributed file system
like Lustre can be considered to minimize access times. Since
distributed file systems distribute data transparently for the
user and have the same POSIX specifications as existing
file systems, this should be easy to integrate. Especially in
the sense of Open Data and the FAIR principles, an easy
and performant access for researchers worldwide should be
realized. The ROOT data format currently in use is suitable
for research thanks to integrated analyses, but ROOT software
must also be used to read it out. This is not suitable for other
use cases. A more open file format such as Apache Parquet
would not only fulfill the FAIR criteria better, but also offer

advantages in read times and compression due to the column-
oriented format.

The storage of metadata in a MySQL database can be im-
proved. Even though performance is not an issue here due
to the relatively small amount of data and number of users,
the use of a NoSQL database should be considered. In the
future, the amount of data may increase further due to better
telescopes. The number of users can easily multiply as the
data is published. Current refills with annoying downtimes can
also be prevented by databases without a fixed schema. Since
no relations between data are necessary, a document-based
database such as CouchDB or MongoDB is a good choice
thanks to better scalability.

For projects with larger data volume requirements, federated
databases can be useful. They offer very good scalability
thanks to the distributed system. Here Greenplum is a very
good alternative if relational databases are necessary. It offers,
besides the good performance, especially a good integration
with other Big Data frameworks. Delta Lake is also a good
framework that combines the advantages of data lakes and data
warehouses. However, it seems to focus more on companies
and integrated analyses. In particular, the weak API seems
to be a problem here. Apache Hive also seems to be very
well suited when petabytes of data have to be stored. It
convinces especially with a good integration into the Hadoop
Ecosystem.

The frameworks considered are far from complete. There
is a need for further research, especially in the aspect of
performance. Frameworks such as Rucio or XTENS [27] also
seem to be very well suited for the scientific area and should be
considered. RUCIO in particular has a very convincing deploy-
ment with CERN’s ATLAS experiment. There it administers
more than one billion files, with altogether 450 Petabyte of
data which are world-wide distributed [28].
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